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Chapter 1

Introduction

1.1 Theoretical Background
During the 1950’s two seemingly uncorrelated scientific events occurred:

• On the one hand, the development and increasing accuracy of both biomolecular structure determi-
nation techniques (NMR, X-ray crystallography) and molecular structure prediction techniques from
theoretical calculations, led into the elucidation of the molecular structure of the deoxyribonucleic
acid (DNA) molecule, by Watson, Crick and Franklin [1]. This milestone marked the beginning of
molecular biology, biologists and chemists were hand-to-hand studying biomolecules at an atomistic
level. A paradigm shift was slowly occurring within biology, chemistry and medicine.

• On the other hand, the advent of Lambda calculus and the Turing machine, both of which were
developed by Alan Turing and Alonzo Church, with inspiration drawn from Kurt Gödel [2], marked
the start of modern computation, quicly followed by a period of sustained growth on the field. Given
their capacity to perform a significant number of calculations, computers started to be developed,
primarily, within the military and engineering fields. In the field of exact sciences, there were a
plethora of potential applications for computers. However, at that time, machines were too large and
too expensive to perform any calculations at the complexity level that physical, chemical or biological
research requires.

In the following decades the Hohenberg-Kohn (HK) theorems and Kohn-Sham (KS) equations were pub-
lished, defining the modern Density Functional Theory (DFT) [3], a simple method able to obtain the energy
of any molecule with quantum mechanical accuracy. Even though DFT is greatly efficient, computational
resources and technology available at the time were not powerful enough to calculate anything approaching
the size of proteins, DNA/RNA, polysaccharides – i.e. biologically relevant macromolecules. Even so, DFT
did shed some light towards the possibility of combining the previously seemingly uncorrelated events into
a new field of research: computational biochemistry [4].

In the meantime, molecular biologists did not stand-by doing nothing. New biomolecules were being
discovered and resolved every week. This provided an immense database for theoretical chemists, from
which extract information about the conformation and atomic behaviour of these molecules. Not only giving
them a reference frame to compare their results with, but also the capability to build force fields (FF). In
contrast with other previous approaches, force fields (FF) were based on Molecular Mechanics (MM) rather
than Quantum Mechanics (QM). While not offering the same accuracy, their execution times are much less
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demanding. The accessibility and applicability of FF, was fundamental to convince experimentalists that
theoretical and computational calculations are not only useful, but necessary. The increasing accuracy and
reliance on computational chemistry helped the development of novel methodologies and techniques in
the field. This, in conjunction with the significant advancements made in computer science, has led to
the current situation, where the majority of publications in chemistry encompass both experimental and
theoretical contributions.

Figure 1.1: Schematic process of main function and selectivity of voltage-gated ion channels, in particular
of Nav. The SF is found towards the end of the channel, where K+ are selected out and Na+ are favoured to
pass through. The behaviour of the channel does also depend on the voltage of the environment.

For the interest of this work it is worth paying special attention to membrane protein channels. These
are essential for the correct functioning of every living being’s homeostasis. These proteins’ actions are
key-elements on functional metabolism, as they take part in almost every (signal) transduction process [5].
Often, proteins of great size are comprised of subunits. The fundamental and most important on protein
channels is theααα subunit, responsible for the pore formation, while all other subunits (βββ,γγγ,δδδ,etc.), also called
accessory subunits, mainly regulate the former’s behaviour [6]. Even though, protein channels’ molecular
structures are more and more easily resolved, the action mechanism of many of them is not completely un-
derstood yet. In particular, ion channels represent a significant amount (∼5.1%) of the total of unique genes
of drug targeted membrane proteins [7]. These are associated with many significant diseases: Alzheimer’s,
epilepsy, Parkinson’s, endocrine disorders, episodic ataxia, cardiac arrhythmia, (familial hemiplegic) mi-
graine, among others [8, 9]. VVoltage-gated ion channels [Figure 1.1] are a subgroup of this category are
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Figure 1.2: Zenithal projection of Selectivity Filter (Asp406/Glu761/Lys1244/Ala1536), with a Na+ in its center,
highlighted using spheres and sticks within the ααα subunit in cartoon.

a subgroup of this category. As the name implies, the activity of voltage-gated channels is regulated by
changes in the membrane’s voltage. These proteins are capable of detecting the transfer of an electrical
charge through the cell membrane and regulate its activity accordingly. From the voltage-gated ion chan-
nels, there are three main ion-selective families: Voltage-Gated Sodium Channels (Nav), Voltage-Gated
Potassium Channels and Voltage-Gated Calcium Channels.

There are 9 known human Nav, they all occur in the central or peripheral nervous system, except Nav1.4 and
Nav1.5 that occur in skeletal and heart muscle, respectively [7]. These are called ααα subunits and are able
to operate by themselves. However, there are 5 βββ subunit variants. Association between them is called a
complex. For instance, Nav complexes are usually 1ααα—1βββ or 1ααα—2βββ. On the one hand, the ααα subunit can
transport ions by itself and has a selectivity towards sodium (Na+). On the other hand, theβββ subunit (mainly)
works as a channel modulator [10]. Additionally, the presence of βββ subunits regulates the ααα subunit gene
expression (within the same tissue), and vice-versa. This work is focused on the recently obtained structure
of human Nav1.4-βββ1 complex, from a cryogenic electron microscopy (cryo-EM) analysis with a resolution
of 3.2 Å. Additionally, the Asp406/Glu761/Lys1244/Ala1536 (DEKA) region, corresponding to the selectivity
filter (SF) confers sodium channels its selectivity [Figure 1.2], was resolved with a local resolution of 2.8
Å. Yet, residues 287 to 335 were not well resolved, the least conserved segment with other Nav. The
whole protein system consists of 2054 residues. The ααα subunit, with 1836 amino acids, is divided into
4 homologous but non-identical repeats (I-IV), each containing 6 transmembrane segments (S1-S6) [11].
The Nav1.4 is highly conserved among all eukaryotic organisms, as shown by Uniprot Blast [12] results,
notably within the Hominidae family, as the Homo Sapiens (Modern Human) protein showed an astonishing
correlation with other hominids, obtaining a residue sequence identity higher than 99% and E-value of 0,
which jointly show a null number of random alignments or consistent residue mismatches, when compared
with the Nav1.4 on Gorilla Gorilla Gorilla (Western Lowland Gorilla), Pan Troglodytes (Chimpanzee),
Pan Paniscus (Bonobo) and Pongo Pygmaeus Abelii (Sumatran Orangutan). The SF, corresponding to the
DEKA motif, is conserved homogeneously among all eukaryotic organism [13, 14].

Molecular level in-depth studies of how these proteins do operate are a necessary step to develop novel
successful therapies. However, in order to study many of the protein properties, molecular dynamics (MD)
simulations are needed. In contrast with static calculations, MD simulations are able to evolve a sys-
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tem in time, employing several single-point calculations in combination with Newton’s laws of motion.
Fortunately, nowadays the computational resources in research institutions are sufficient to conduct such
simulations, even at QM accuracy, commonly with DFT level of theory. Theoretical chemistry is by far
the best way to study these systems’ mechanism at an atomistic level, thus the immense relevance of com-
putational calculations on the field. Particularly, few research has been done related to Nav on eukaryotes.
In contrast, some MD simulations have been successfully performed on Nav on prokaryotes. The impli-
cation on human health and the amount of high resolution Nav makes them very suitable for theoretical
calculations [14]. This work aims to further explore and explain previously obtained MM-MD results, from
calculations conducted by Nuria Anguita and Juanjo Nogueira at the MoBioChem research group of the
Autonomous University of Madrid.

These previously performed simulations did not resulted as expected for de DEKA selectivity, as both Na+

and K+ passed through the selectivity filter with similar ease. The simulations were performed with a FF and
applying a potential electric field to enhance the simulations. Both ion enter the channel in coordination with
water molecules. In the near proximity of the SF, Na+ lost an average of 1.5 waters, but gained one water
molecule while exactly passing through the DEKA ring. On the other hand, K+ loses 1.6 water molecules
in the vicinity of the SF, and loses one additional water molecule when passing through the DEKA ring.
Nevertheless, waters were not accurately simulated by the FF, as some frames of the simulation show equal
charges facing each other (e.g. −Hδ+ and Na+).

1.2 Objectives
The general objective of this work is to characterize the interactions involved in the ion conduction mecha-
nism of Nav. To achieve this, the following specific objectives are pursued:

• To perform a benchmark of DFT functionals to chose an appropriate functional to model the inter-
molecular interactions present on the system.

• To study the microsolvation of Na+ and K+ and investigate their behaviour in terms of movement and
interactions.

• To build a model composed of either Na+ or K+, water molecules and either glutamate or aspartate,
representing the most relevant interactions between the solvated ion and the DEKA.

• To compute the interaction energy among all the components of the cluster model and characterize
this interaction by an energy decomposition analysis technique
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Chapter 2

Methodology

In this work the intermolecular interactions between solvated ions and amino acids have been characterized
to shed light into the ion conduction mechanism in the eukaryotic voltage gated ion channels. Such a char-
acterization has been carried out in a cluster model by applying a combination of different computational
methods, namely, DFT, MD and EDA.

2.1 Electronic Structure
The initial quantum mechanical (QM) methods were based on wave function theory (WFT), which was in-
spired by Schrödinger’s equation (2.1). The Hartree-Fock (HF) method, which was introduced in 1930 and
is still used in the present day, marked a significant turning point in theoretical and computational chem-
istry. In order to overcome the many-body problem, the HF method was constructed upon the mean-field
approximation, where only one electron is assessed at a time, while all other electrons form an electronic
field that affects the one electron’s behaviour. Consequently, the HF method is not exact, as the mean-
field approximation does not account for any electron correlation at all. In order to address this significant
disparity between the exact energy and the HF energy methodology in accounting for correlation effects,
post-HF methodologies have been developed. Despite producing results that are closer to the exact energy,
these methodologies are quite computationally expensive. One of the most commonly employed post-HF
methodology is Møller-Plesset perturbation theory (MPPT). However, due to the high computational cost,
it is often applied only up to the second order (MP2).

Ĥ |ψ⟩ = E |ψ⟩ (2.1)

The most prevalent approximations in quantum mechanical (QM) methods employed in computational
chemistry is the Born-Oppenheimer (BO) approximation. This states that the movement of electrons is
decoupled from that of nuclei. The use of the BO approximation has minimal impact on calculations in
most chemical systems, as nuclei have a quasi-infinite mass in comparison with electrons.

A wide variety of theoretical approaches exist for calculating a molecule’s energy, all of which explicitly
consider electrons. However, the treatment of electrons implies the consideration of two particularly notable
electron properties: exchange and correlation (XC). The exchange interaction, also called Pauli repulsion
when considering only fermions, arises when a system of indistinguishable particles, e.g. – electrons, are
susceptive to exchange leading to an additional term in the energy that accounts for the anti-symmetry of the
wave-function. The electronic correlation arises from the instantaneous interaction that occurs between
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electrons, which can be further separated into dynamic correlation, that accounts for the electron-electron
repulsion, and static correlation that arises from the near-degeneracy of a system’s electronic configuration.
As stated earlier, HF does not take into account correlation, though it completely and exactly calculates the
exchange, thus (WFT) post-HF methods exclusively treat the error caused by the lack of correlation.

2.2 Density Functional Theory

2.2.1 Foundations
In contrast with WFT, on the early years of computational and theoretical chemistry, DFT based method-
ologies had been poorly researched. The only major breakthrough done with DFT before the HK theorems
was the Thomas-Fermi-Dirac (TFD) model [3]. Nevertheless, DFT offered a refreshing point of view for
theoretical chemistry, by using the electron density (ρ) the Hamiltonian would depend only on the positions
of the nuclei and the total number of electrons (N).

N =

∫
ρ(r)dr (2.2)

The approach followed by the TFD model was to define the potential energy in a classical way and use a
uniform electron gas (UEG), also called jelium, to calculate the kinetic energy. Consequently, early DFT
models found widespread use in the solid-state physics community. In contrast to chemistry, where the
fairly large errors in molecular calculations resulted in TFD having little to no impact. The model was,
despite problematic, the best way of calculating a Hamiltonian using, virtually exclusively, the electronic
density. However, this state of affairs was set to change when Hohenberg and Kohn (HK), in 1964, proved
two theorems critical to establishing DFT as it is currently best known [15].

Hohenberg-Kohn Theorems

The total ρ completely and exactly determines all the ground-state properties of an N -electron system:

νext → ψ0 → ρ (2.3)

In essence, for a N -electron system, in an external potential (νext), such as a random distribution of point
charges, there is a unique ground-state wavefunction (ψ0) and, consequently, a unique ρ. Ultimately, this
means that, in a non-degenerate ground-state system, there shall be only one possible ρ for its νext and thus
a unique ψ0 (2.4).

ρ→ νext → ψ0 (2.4)

This constitutes de first HK theorem, and it is the most important premise to take in mind when working with
DFT. Theoretically, from an ρ, it is possible to extract all the information that could be obtained from the
wavefunction (ψ). This statement is proved by reductio ad absurdum. Any two possible external potentials
(νa and νb) cannot be described by the same ρ, since this would imply the existence of two Hamiltonians
(Ĥa and Ĥb), that belong to two different ground-state wavefunction (ψ0,a and ψ0,b), whose combination
yield their respective ground-state energies (E0,a and E0,b) (2.5), which are associated to the same ρ. Thus,
the ψ0 are not equal.

⟨ψ0,a| Ĥa |ψ0,a⟩ = E0,a

⟨ψ0,b| Ĥb |ψ0,b⟩ = E0,b

(2.5)
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Applying Ĥa to ψ0,a cannot yield E0,a. Actually, the obtained value must be higher than E0,a (2.6), due to
the variational theorem of WFT [15].

E0,a < ⟨ψ0,b| Ĥa |ψ0,b⟩ (2.6)

rewriting Ĥa as Ĥa − Ĥb + Ĥb, leads to an inequality relating the ground-state energy of one wavefunction
with the other (2.7).

E0,a < ⟨ψ0,b| Ĥa − Ĥb + Ĥb |ψ0,b⟩
< ⟨ψ0,b| Ĥa − Ĥb |ψ0,b⟩+ E0,b

<

∫
[νa − νb]ρ(r)dr + E0,b

(2.7)

If this same procedure is applied with Ĥa and ψ0,a, the following would be obtained:

E0,b <

∫
[νb − νa]ρ(r)dr + E0,a (2.8)

Combining both inequalities gives rise to a contradiction in which the sum of the energies is greater that
itself (2.9), as this cannot be possible, the premise that there are two possible external potentials that are
described by the same density functional in a non-degenerate ground-state system is false, thus there must
be one and only one ρ for each ψ0, and vice-versa.

E0,a + E0,b <

∫
[νa − νb]ρ(r)dr +

∫
[νb − νa]ρ(r)dr + E0,a + E0,b

E0,a + E0,b <
���������∫

[νa − νb]ρ(r)dr −
���������∫

[νa − νb]ρ(r)dr + E0,a + E0,b

E0,a + E0,b < E0,a + E0,b

(2.9)

Hence, it is possible to build a functional (function of functions) that is able to obtain the energy of a
chemical system, simple by knowing the number of electrons and the position of the nuclei. The second
HK theorem proves that DFT can be variational (2.10), thereby indicating that the energy yielded by such
functional would be exact at the ground-state. Consequently, from such functional (F [ρ]), the obtained
energy will always be lower than the energy of F [ρ′], such that ρ′ does not correctly correspond to the true
νext [3].

F [ρ′] +

∫
νextρ

′(r)dr ≥ F [ρ] +

∫
νextρ(r)dr = E0 (2.10)

Kohn-Sham Equations

The HK theorems proved that a functional that only uses ρ, as input, is able to yield the exact energy of a
system. Not much later the Kohn and Sham (KS) equations were released. A set of equations that could be
used to approach this problem. However, it is important to take in mind that the obtained functionals do not
represent the exact functional proposed by HK.

The KS equations consider, at first, a system of non-interacting particles, from which an approximate (K0)
of the kinetic energy (K) of electrons is extracted from its orbitals (ϕ) (2.11). In order to approximate the
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electron-electron potential energy (Vee), the Coulomb energy (J) is used (2.12).

K0 =
N∑
i

⟨ϕ| − 1

2
∇2 |ϕ⟩ (2.11)

J [ρ] =
1

2

∫ ∫
ρ(1)ρ(2)

r12
dr1dr2 (2.12)

As these are approximations, combining terms (K0 and J) into a single F [ρ] does not yield the exact energy.
The error obtained is known as the XC energy (EXC).

F [ρ] = K0 + J [ρ] + EXC[ρ] (2.13)

Thus, the EXC could be calculated as the difference (2.14) between the exact energy value and the approxi-
mate value.

EXC = (K[ρ]−K0) + (Vee[ρ]− J [ρ]) (2.14)

Finally, the total KS energy would be:

E[ρ] = K0 +

∫
νext ρ(r)dr + J [ρ] + EXC (2.15)

from which the only unknown value is EXC, that represents a small fraction of the total energy. Further,
orbitals can be minimized (2.16) by using a KS potential (νKS), consisting of νext, the electronic potential
(νel) and the functional derivative ( δEXC

δρ
) (2.17). Consequently, KS DFT can be carried out using the same

basis sets already designed for WFT [3].

−1

2
∇2ϕi + νKSϕi = ϵiϕi (2.16)

νKS = νext + νel +
δEXC

δρ
(2.17)

The first approach to the EXC was the Local Density Approximation (LDA) based on the UEG XC energy
adjusted to the local ρ (2.18).

ELDA
XC =

∫
eUEG

XC (ρ) (2.18)

2.2.2 Jacob’s Ladder
Even though, the exact EXC was proved to exist, there is no guide on how to find it. Using LDA as
the theoretical framework and starting point, Density Functional Approximation(s) (DFA) have been and
are developed, by multiple theoretical chemistry research groups and institutions [16]. While DFT is a
theoretical basis, variational and thus exact in their foundations, DFAs are merely the attempts to develop a
functional based on DFT [3].

In order to improve the exchange energy (EX) in DFAs, an added dependency on the electron density
gradient (∇ρ) is made through what is known as the exchange enhancement factor (fX) that itself utilizes
the reduced density gradient (s) (??). All together produce the Generalized Gradient Approximation (GGA)
(??). Correlation also improves by introducing the ∇ρ, though it has a complex analytical form, not directly
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correlated to physical reasoning. It is important to remember that, in principle, any DFA’s correlation may
be combined with any other DFA’s exchange.

(2.19)

The next logical step is not only to account for the density gradient (∇ρ), but also the density Laplacian
(∇2ρ). Alternatively, the orbitals kinetic energy density (τ ) (2.20) may be introduced instead of the ∇2ρ, as
they carry, essentially, the same information.

τσ =
1

2

∑
i

|∇ϕiσ|2 (2.20)

The aforemetioned terms can be employed in in bo, Exchange and Correlation terms. Therefore, the GGAs
that incorporate either τ , ∇2ρ or both are called meta Generalized Gradient Approximationss (mGGAss)
[3, 17].

EmGGA
XC =

∫
eXC(ρ,∇ρ, τ) (2.21)

On the other hand, the HF method yields the exact exchange. Though, as the KS framework is not identical
to the one in the HF method, using the HF exchange (HFX), as it is exact, could be a way to improve
DFAs exchange. Indeed, it has been demonstrated that using a fraction of the HF exchange in GGA and
mGGA functionals does improve the results. The DFAs that followed this approach are called Hybrid
Functionals (??). The sum between the percentage of HFX and EX combined is usually close or equal to
100% (a+ b ≈ 1).

EXC = aHFX + bEX + EC (2.22)

The last step implemented in DFAs to better results has been to introduce the MPPT, almost uniquely MP2,
into the correlation energy (2.23), these are called Double-Hybrid Functionals. Though, as expected, these
functionals are very computationally expensive [17].

EXC = aXHFX + bXEX + aCMP2C + bCEC (2.23)

This sort of regatta towards the exact functional has been coined as Jacob’s Ladder, where LDAs stand at
the bottom, GGAs represent the following step, mGGAs the next one, then Hybrid, then Double-Hybrid
and at the top is the uknown exact XC-DFT functional. Each of these is currently referred as a DFT
Family [16, 18].

Nonexistence of an Absolute Reference Frame

As DFAs are neither exact nor variational there is no absolute reference frame to guide from when using
exclusively DFAs. Not even increasing the basis set size would necessarily improve the results. Thus,
in order to favour one functional over another, either there are performedsupporting calculations using
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variational methods, or a previous benchmark, from which high level variational (costly post-HF) method
calculations were performed, is consulted. The latter has become a very popular approach, as many DFAs
excel in particular types of systems and fall behind in most other environments, it is much easier to select
a few DFAs from a grand catalogued of already tested out functionals, than to systematically perform big
benchmarks for each new study.

2.3 Interaction Energy
The interaction energy (EInteraction) of any system’s fragment with its environment is defined (2.24) as the
difference between the system’s energy (EAB) with the fragment’s energy (EA) and the environment’s en-
ergy (EB), which is called supermolecular approach. In this scenario, the environment means anything that
is not the fragment. Depending on the system, it might be more suitable to call both A and B monomers and
AB the complex.

EInteraction = EAB − (EA + EB) (2.24)

2.3.1 Basis Sets and Superposition Error
The application of quantum mechanical (QM) methods is contingent upon the use of orbitals (ϕ), which
serve as the fundamental representation of electrons. Therefore, the development of a mathematically
rigorous framework for describing these orbitals is of great importance. A common way to achieve a
readily computable set of orbitals, a number of Gaussian functions (2.25) are assembled to form a basis
function (2.26), which is then combined with multiple basis functions to constitute a basis set (BS) [17].

χ = AAe−µr2 (2.25)

ϕi ≈
∑
α

cαiχα (2.26)

As BSs do not perfectly describe electronic orbitals, they are subject to associated errors. In particular, the
basis set superposition error (BSSE) arises when studying the interaction energy between fragments of a
system. When atoms between molecules are in close proximity, their basis functions may overlap, leading
to an overestimation of the binding energy. Since the basis set of the complex AB is larger than the basis
set of the individual moleculas A and B, when doing the energy difference EAB-EA-EB the interaction
energy is overestimated due to the artifical lowering of EAB with respect to EA and EB. Since the basis
set of the complex AB is larger than the basis set of the individual moleculas A and B, when doing the
energy difference (2.24) the interaction energy is overestimated due to the artifical lowering of EAB with
respect to EA and EB. One way to avoid this is by using the complete (infinite) basis set, which is a highly
expensive approach. Conversely, the counterpoise (CP) method represents a considerably more efficient
solution. In order to account for the BSSE when calculating interaction energies, the CP method calculates
each monomer individually, while maintaining all the BSs of the system (2.27). Thus, the BSSE can be
calculated and subsequently subtracted from the total energy of the system.

EInteraction = EAB
AB − (EAB

A + EAB
B ) (2.27)
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2.3.2 Energy Decomposition Analysis
In order to study the interaction energy (EInteraction) itself, it is useful to break down the energy into differ-
ent contributions. According to perturbation theory, all intermolecular interactions contain the following
fundamental physical contributions: [19]

• Electrostatic: Obtained from the quasi-classical Coulomb interaction.

• Exchange: Results from the tunnelling of electrons between interacting systems.

• Repulsion: Alludes to the Pauli exclusion principle that occurs between electrons at immediate dis-
tances.

• Induction: Originates from the polarization response of each molecule to the electrostatic field of
any others.

• Dispersion: Arises from the correlated fluctuations of electron densities between near molecules.

These last two (induction and dispersion) form part of the polarization.

The Density based Energy Decomposition Analysis (EDA) method is a perturbation approach to the in-
termolecular interactions, initiated from eq.2.27. It manipulates the total energy expression (2.28), which
depends on the one-electron density (ρ(r)) and the two-electron exchange correlation density (ρXC(r1, r2)),
to obtain a proper energy decomposition.

E = −1

2

∫
∇2ρ(r, r′)r′=rdr +

∫
νNρ(r)dr +

1

2

∫ ∫
ρ(r1)ρ(r2)
|r2 − r1|

dr1dr2

+
1

2

∫ ∫
ρXC(r1, r2)
|r2 − r1|

dr1dr2 +
N−1∑
i=1

N∑
j>i

ZiZj

|Ri − Rj|

(2.28)

Firstly, the nuclear terms are subdivided into the monomer contributions (2.29). Secondly, the one-electron
and two-electron exchange correlation densities are described as a combination of unperturbed terms of
each monomer, and perturbation terms resulting from their interaction (2.30) .

N−1∑
i=1

N∑
j>i

ZiZj

|Ri − Rj|
=

NA−1∑
i=1

NA∑
j>i

ZiZj

|Ri − Rj|
+

N−1∑
i=NA

N∑
j>i

ZiZj

|Ri − Rj|

+

NA∑
i=1

N∑
j=NA+1

ZiZj

|Ri − Rj|
, NB = N −NA

(2.29)

ρ(r) = ρA(r) + ρB(r) + ∆ρ(r)polarization +∆ρ(r)Pauli

ρXC(r1, r2) = ρAXC(r1, r2) + ρBXC(r1, r2) + ∆ρXC(r1, r2) + ρAB
X (r1, r2)

(2.30)

On the one hand, the ∆ρ(r)polarization and ρXC(r1, r2) terms arise in the relaxation of the system’s wave-
function, therefore account for the polarization interaction. On the other hand, the ∆ρ(r)Pauli and ρAB

X (r1, r2)
terms allude to the anti-symmetrization of the wave-function, in other words the exchange-repulsion in-
teractions. Finally, the EInteraction is divided into its fundamental contributors: the electrostatic energy
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(Eelectrostatic); the Pauli energy (EPauli), that is a combination of exchange and repulsion energies, and fi-
nally the polarization energy (Epolarization) term:

EInteraction = Eelectrostatic + EPauli + Epolarization (2.31)

Additionally, (Epolarization) can be decomposed into two distinct contributions, namely induction (Einduction)
and dispersion plus other contributors (Edisp+res-pol), through the use of second-order perturbation theory,
arriving to the final expression:

EInteraction = Eelectrostatic + EPauli + Einduction + Edisp+res-pol (2.32)

This last term (Edisp+res-pol) is considered to represent the dispersion energy as these other polarization con-
tributors, in the case of weak non-covalent interactions, are negligible. [20]

2.4 Molecular Dynamics

2.4.1 Basic Concepts and Verlet integration algorithm
Molecular Dynamics (MD) simulations belong to the time-dependent methods, where the kinetic energy is
strictly related to the temperature, thus molecules can only explore regions of the potential energy surface
(PES) that are lower (or equal) to the kinetic energy. Take in mind that in MD (usually) energy is conserved.
The movement of the nuclei are calculated using Newton’s second equation (2.33), relating the force (F =
−dV

dx
), obtained through the potential energy (V ) and the position of the particles (x), with mass (m) and

acceleration (a = d2x
dt2

).

−dV
dx

= m
d2x

dt2
(2.33)

In order to calculate the position of the nuclei on the following step, integration algorithms based on New-
ton’s equations are used. The most common is the Verlet algorithm (2.35 & 2.36). Considering the Taylor
expansion for the movement of the nuclei (2.34) using positive and a negative timesteps (∆t & −∆t) at the
same time (xi+∆t + xi−∆t) even order terms cancel each other, while odd order terms sum.

xi+∆t =
∑
k

1

k!

dkx

dtk
(∆t)k

xi−∆t =
∑
k

1

k!

dkx

dtk
(∆t)k(−1)k

(2.34)

Thus jerk (d
3x
dt3

) is not being considered, the remaining hyperacceleration terms (now of order 4 or higher)
are so small that they can be considered negligible (2.35). Though, the resulting equation needs the step
previous to the initial one. This can be estimated (2.36) using a first order approximation of the Taylor
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expansion (2.34) [17].

xi+∆t = (2xi − xi−∆t) +
d2x

dt2
(∆t)2 +

���
����1

12

d4x

dt4
(∆t)4 +��... (2.35)

x0−∆t = x0 −
dx

dt
(∆t) (2.36)

2.4.2 Kinetic Energy and Temperature
In the context of studying biological systems, it is essential to define a temperature (T ), as biological
environments highly influenced by T . To maintain a specific T throughout an MD simulation, the kinetic
energy (K) is adjusted to align with the equipartition theorem (2.38), or similar expressions.

K =
1

2

N∑
i

miv
2
i (2.37)

K =
3

2
kBT (2.38)

However, using the Verlet algorithm, velocities (vi) are not directly calculated, as the evolution of the
atomic coordinates only depend on its acceleration (ai), but are essential to calculate the K (2.37). Thus,
the velocities have to be estimated (2.39) or calculated at each step during the simulation (2.40).

vi =
ri+∆t − ri−∆t

∆t
(2.39)

vi+∆t = vi +
1

2
(ai + ai+∆t)∆t (2.40)

Once the temperature is specified, the velocities are adjusted in order to maintain K following the equipar-
tition theorem (2.38). The way in which the velocities are calibrated may vary, the many algorithms that
serve this purpose have been coined as thermostats. A common way in whichK suits the simulation desired
temperature (Tref ) is adding a coupling parameter (λ) that defines the velocity scale factor in accordance
with the simulated temperature (Tsim) at each step (2.41)

Velocity scale factor =

√
1 +

∆t

λ

(
Tref
Tsim

− 1

)
(2.41)

More complex thermostats, such as the the Nosé-Hoover, considers a heat bath around the systems whose
lambda varies dynamically along the simulation, producing a more thermodinamically accurate fluctuation
of temperature [17].

2.4.3 Ab initio Potential Energy Calculations
As it was previously described MD propagate the nuclear positions by solving Newton’s second equation
in a time-discretized form using a potential energy function. When the latter is ab initio or QM based,
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recurring to classical mechanics is justified in Born-Oppenheimer Molecular Dynamics (BOMD). It uses
an approximation of the Born-Huang representation of the wavefunction (2.42), where it is decoupled into
a direct product of the electronic (Φ) and nuclear (Ω) wavefunctions, as the mass of the nuclei is quasi-
infinite in comparison with the mass of electrons (the basis of the BO approximation).

ψ(r,R, t) ≈ Ω(R, t)Φ(R, r) (2.42)

When the classical limit is taken, the total energy is conserved without uncertainty. Thus the nuclei kinetic
energy (Knuc) may be calculated through the V (2.43). In conclusion, Newton’s laws of motion may be
applied (2.44) while using QM based potentials (VQM).

Knuc + V [R, r] = 0 (2.43)

VQM[R, r] →M
d2R
dt2

(2.44)
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Chapter 3

Computational Details

This chapter resumes the procedures followed and overall performed calculations. A fluxogram summariz-
ing this chapter can be found at the end of it on Figure 3.5. Two microsolvation structures with 18 waters
each were studied for both Na+ and K+. After analysing the results one of these structure was selected.
From this solvation structure MD simulations were performed to better understand the behaviour of Na+

and K+ on a microsolvated environment. Later, a study of the ions with key-elements from the DEKA ring
was performed. In the first place energy profiles were done, subsequently a more profound analysis of the
interaction was carried out by means of EDA.

3.1 Microsolvation

3.1.1 Benchmark and Energy
Two distinct microsolvation structures were initially considered, comprising 18 waters each. Structures
were obtained from other metal microsolvations [21]. The structures are named A [Fig.3.1a] and B [Fig.3.1b].
Structure A exhibits C3 symmetry, whereas structure B exhibits Ci symmetry. The first and second solva-
tion spheres are formed by 6 and 12 water molecules, respectively. Consequently, the geometries under
investigation were derived from these microsolvation structures, in which the original metal was replaced
by Na+ and K+.

A comprehensive analysis has been conducted to identify all equilibrium structures and the most stable
conformations in all microsolvation geometries. This analysis has been undertaken with consideration of
a recent study on organic molecules microsolvated [22] in order to compare the accuracy and performance
of different functionals. For this purpose, different types of functionals have been considered. Firstly,
B3LYP and ωB97XD are Hybrid-GGA functionals. Secondly, M06-2X and PW6B95D3 are Hybrid-mGGA
functionals. Lastly, PDE0-DH is a Double-Hybrid-GGA functional. All calculations have been carried out
with the empirical dispersion correction D3 of Grimme [?]. In order to fairly compare them, an optimization
process with each functional was done from the same initial geometry [Fig.3.1]. Geometry optimization
and vibrational analysis were conducted using Gaussian16. Additionally all optimization calculations were
performed using cc-pVDZ basis set [23], except for K+, treated with the LANL2DZ [24] combination of
double zeta basis set and pseudo potentials.
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(a) (b)

Figure 3.1: Initial Microsolvation geometries, A and B, with C3 and Ci symmetry respectively. Each system
has a total of 18 water molecules and the ion in its center.

3.1.2 Molecular Dynamics
Even though the previous calculations helped to choose a functional to perform posterior calculations,
the MD simulations had to be performed at the B97-D4 def2-SV(P) level of theory, in order to reduce
computation times. The functional was chosen with basis on its performance and computational efficiency
[22]. From the optimized microsolvation structure of each ion, BOMD simulations were performed. The
simulations were carried out using Orca (Version: 5.0.4). The MDs run for 10000 steps with a timestep of
0.5 fs, the recovered trajectories had a stride of 5 steps. The temperature was set to the biological standard
of 310 K, using a Nosé-Hoover Thermostat that controlled the temperature every 10.0 fs. The system was
contained within a spherical cell of 6.2 Å of radius. Prior to the analysis, the trajectory’s first steps were
cut off, until the energy was stable. Two main analysis were performed to the MD obtained:

1. Root-Mean-Square Fluctuation (RMSF):
Evaluates how much an atom has moved (from its initial position) in average, along the simulation.

2. Radial Distribution Function (RDF):
Describes how the density of a specific atom type (i.e. oxygen) varies in function of distance from a
center point (i.e. the ion) in average, along the simulation.

Calculations were done with MDAnalysis (Version: 2.7.0), for the RMSF, and AMBER (Version: amber20),
for the RDF.

3.2 Interaction Energy
In order to understand the interaction between ion and SF from the channel, the two main amino acids
(glutamate and aspartate), to which the ion coordinates within the DEKA ring, had been studied. To do so,
the second solvation sphere was removed, remaining only the first sphere. This first solvation sphere has a
C3 symmetry, meaning that there are two sets, of three waters each, with significantly different distances.
A potential energy profile (PEP) and subsequent interaction energy analysis were carried out.

16



3.2.1 Energy Profile
The variable to analyse throughout the PEP was the distance between a selected monomer and the ion. The
so called monomers were: two differently distanced water molecules (closer and farther), the glutamate
residue and the aspartate residue. This ends up in a total of eight different PEPs, as there are four different
monomers and two ions. The PEPs were generated through a sequence of singlepoint calculations varying
along a distance (ion-monomer), also called scan. This was achieved using a local script and Gaussian (Ver-
sion: Gaussian16) at the M06-2X/cc-pVTZ level of theory (LANL2DZ for K+). The BSSE was corrected
using the counterpoise method from Gaussian. Scans were done with a distance of 0.2 Å per step. The
water molecules scans were performed for a total of 50 steps, so a total displacement distance of 10.0 Å.
The residue scans had a total of 80 steps, giving a final displacement distance of 16.0 Å. The initial distance
from the ion at which waters were is 2.71 and 2.73 Å, for closer and farther in K+, and 2.28 and 2.37 Å, for
closer and farther in Na+. The initial distance ion-carbon (from the side-chain carboxylate), for the residues,
is 2.2 Å.

From these results a distance of minimum energy for each residue was revealed. Those minimum energy
geometries were later used to perform the EDA calculations.

3.2.2 Energy Decomposition Analysis
The eight minimum energy geometries, obtained in the previous step, were subject to EDA calculations. For
each of these, two main EDA calculations have been performed, in order to study the interactions between
ion-environment and between monomer-environment [Figures 3.2 and 3.3], leaving a total of sixteen main
EDA calculations. Additionally, the systems have been divided into discrete components in order to study
the interaction between specific parts of the same system. The components include ion-monomer, ion-
environment and monomer-environment; the monomer being either the residue or the selected water, while
the environment is the remaining water molecules. This ends up in a total of 24 EDA calculations. These
were carried out with EDA-NCI by Prof. Mandado [25].

These calculations complement one another. The distance ion-residue of minimum energy is obtained
from the scan. Afterwards, the structure is studied with EDA, obtaining the interaction energy between
monomers. Thereby, this corresponds to the interaction energy of the minimum. If used as a reference it
is possible to adjust all the absolute energy values from the PEP to represent instead the interaction energy
using the following expression:

EEDA = (Emin − Eref )c
te
conv

Eref = Emin −
EEDA

cteconv

(3.1)

The cteconv represents the conversion factor between Hartree and kcal/mol.
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(a) sCW (b) sFW

(c) sIW

(d) sGLU (e) sIGLU

(f) sASP (g) sIASP

Figure 3.2: The different monomers used to perform EDA calculations for the all water (or one residue) of
the Na+ microsolvation. The systems show monomers as different colour atoms, stale blue or orange. EDA
calculations were performed to obtain their interaction. Images (a) to (c) show the system containing only
waters. Image (a) shows the closer water, while image (b) shows the farther water in a different colour.
Image (c) represent the interaction between Na+ and all waters. Images (d) and (f) represent the residue,
glutamate and aspartate respectively, interaction with Na+ and waters. Images (e) and (g) represent the Na+

interaction with the residue, glutamate and aspartate respectively, and waters.
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(a) pCW (b) pFW

(c) pIW

(d) pGLU (e) pIGLU

(f) pASP (g) pIASP

Figure 3.3: The different monomers used to perform EDA calculations for the all water (or one residue)
of the K+ microsolvation. The systems show monomers as different colour atoms, limon yellow or purple.
EDA calculations were performed to obtain their interaction. Images (a) to (c) show the system containing
only waters. Image (a) shows the closer water, while image (b) shows the farther water in a different colour.
Image (c) represent the interaction between K+ and all waters. Images (d) and (f) represent the residue,
glutamate and aspartate respectively, interaction with K+ and waters. Images (e) and (g) represent the K+

interaction with the residue, glutamate and aspartate respectively, and waters.
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3.3 DEKA System
A frame from a previously performed MM-MD simulation, in which Na+ passed through the DEKA, was
subject to analysis. The system was stripped down to its essential components, with the DEKA system
and the ion remaining. Subsequently, four waters were added, considering the simultaneous coordination
of Na+ with glutamate and aspartate from the DEKA ring. The water molecules were displayed in the po-
sition obtained from the optimized microsolvated structure. This structure was optimized considering two
possibilities: constraining the DEKA and ion, or constraining only the DEKA. Calculations were carried
out with Orca at the level of theory of M062X/cc-pVDZ. An EDA calculation was performed on the opti-
mized geometry, considering different monomer combinations [Figure 3.4]. Additionally, the combinations
between residue (either glutamate or aspartate), Na+ and environment (everything left) were calculated.

(a) DEKA-I

(b) DEKA-GLU (c) DEKA-ASP

Figure 3.4: The different monomers used to perform EDA calculations for the DEKA and Na+ · 6 H2O.
The systems show monomers as different colour atoms, stale blue or orange. Image (a) shows Na+ as one
monomer and all remaining atoms as the other. Image (b) shows glutamate as monomer, and image (c)
shows aspartate.
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Figure 3.5: Simplified procedure showing the steps followed. It has been divided into 3 columns. The most
left shows calculations performed with the DEKA ring. The center column shows the steps mainly related
with ion interaction, either with water or amino acids. Finally, the most right shows the steps related to the
microsolvation of the ions, mainly the MD simulations.
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Chapter 4

Results and Discussion

4.1 Microsolvation
Optimized Structure and Energy

Table 4.1: Energy obtained from microsolvation structures A and B for both ions, with the DFAs selected.
**Interaction Energies serve purely an indicative purpose, there was not effectuated any BSSE correction.

Ion Structure DFA Total Energy (Hartree) Interaction Energy** (kcal/mol)

So
di

um

B

B3LYP -1538.3100 -205.6115
ωB97XD -1539.8709 -193.4718
M06-2X -1537.6521 -195.0744

PW6B95D3 -1537.8496 -198.7861
PDE0-DH -1536.5118 -193.4347

A

B3LYP -1538.3262 -183.0167
ωB97XD -1537.8658 -171.9342
M06-2X -1537.6604 -178.0829

PW6B95D3 -1539.8803 -178.3332
PDE0-DH -1536.5252 -201.8063

Po
ta

ss
iu

m

B

B3LYP -1404.1087 -155.2483
ωB97XD -1405.5072 -146.3026
M06-2X -1403.4342 -145.8030

PW6B95D3 -1403.6788 -148.9537
PDE0-DH -1402.4232 -143.8446

A

B3LYP -1404.1277 -135.5230
ωB97XD -1403.6974 -126.6155
M06-2X -1403.4464 -130.9379

PW6B95D3 – –
PDE0-DH -1402.4392 -124.3341
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(a) Potassium (b) Sodium

Figure 4.1: Optimization of Structure A of the Second Microsolvation Sphere of both Potassium (a) and
Sodium (b), from the original structure A, using M06-2X/cc-pVDZ.

The initial microsolvation structures [Fig.3.1] were succesfully optimized. The energy obtained from the
optimization from the original microsolvation structures [Figure 3.1] using the DFAs listed on 3.1 Micro-
solvation are shown on Table 4.1, Unfortunately the structure A with K+ optimization did not converge
when using PW6B95D3. Results show that structure A presents the lower absolute energy in comparison
with structure B, both for Na+ and K+. Henceforth, subsequent analysis will be performed with basis on
structure A. The ion-water distances from the first sphere, on the K+ are 2.71 and 2.73 Å , while on Na+ are
2.28 and 2.37 Å. A certain degree of consistency across all functionals is observed:

• There are lower interaction energy values for Na+ than for K+, as expected.

• Calculations with K+ show a less energetically negative value than Na+. This results serves exclu-
sively to confirm the consistency in results within each individual functional. Calculations with K+

were done combining basis sets, thus it is not possible to conclude any physical-chemical property
when comparing absolute energies with Na+ systems, treated with only one basis set.

Table 4.2: CPU Time spent on the same system’s single point energy calculation compared between DFAs.
Time is expressed as 00h00’00” meaning hours–minutes–seconds in that particular order. All calculations
were performed on the same cluster’s node, minimizing the variation on computational resources available.

DFA CPU Time
B3LYP 08’18”
ωB97XD 12’06”
M06-2X 09’22”

PW6B95D3 22’50”
PBE0-DH 2h28’02”

Despite the fact that all functionals were found to perform correctly, M06-2X has previously been shown to
provide excellent performance when studying non-covalent interactions without the introduction of empir-
ical dispersion corrections [22, 26, 27], particularly in the context of bio-organic compounds.Furthermore,
M06-2X has been demonstrated to offer an excellent performance-to-computational cost ratio [Table 4.2].
Consequently, the following non-dynamical calculations were conducted using M06-2X.
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Molecular Dynamics

The MD simulations show that the distance between waters and Na+ is shorter than with K+, as it was
expected. Moreover, throughout the simulations, there was a continuous exchange between first and second
sphere waters. However, this process was much more noticeable for K+ than Na+ [Table 4.3]. The selectivity
of DEKA towards Na+ may be attributed to the ion inclination to maintain a hydrated state [6].

Table 4.3: Value for the RMSF (Å) of Oxygen atoms are displayed. Oxygen atoms are labelled with their
respective ID. Atoms from 2 to 7 correspond to the first microsolvation sphere, while all others correspond
to the second microsolvation sphere.

Oxygen’s ID Sodium Potassium

Fi
rs

tS
ph

er
e

2 0.66 1.01
3 0.60 0.80
4 0.83 0.93
5 0.75 0.92
6 0.52 0.61
7 0.74 0.71

Average 0.67 0.82

Se
co

nd
Sp

he
re

20 1.27 1.27
21 0.51 0.61
26 1.22 0.96
27 0.78 0.53
32 0.74 0.79
33 1.16 0.78
38 1.01 0.72
39 0.41 0.90
44 0.97 1.35
45 0.55 0.50
50 0.60 1.09
51 0.60 0.80

Average 0.77 0.82

The values obtained for the RMSF in the Na+ simulation are lower than those obtained in the K+, particularly
within the first solvation sphere, showing a maximum values of 0.83 and 0.93 Å, but also average values
of 0.67 and 0.82 Å, respectively. The second sphere also presented, in general, smaller values for Na+ than
K+, showing maximum values of 1.27 and 1.35 Å, but also average values of 0.77 and 0.82 Å, respectively.
The fact that Na+ waters present lower RMSF values indicates a stronger ion-water interaction.
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(a) (b)

(c) (d)

Figure 4.2: RDF of Oxygen atoms during the K+ (a) and Na+ (c) MD simulations. Images (b) and (d),
for K+ and Na+, show the 1000th frame of the simulation, both with a green circle with 6.2 Å of radius,
representing the limit of the cell. Image (b) red circle has 3.15 Å, while red circles at image (d) have 2.85
and 4.15 Å, matching their respective RDFs’ peaks.

The RDF plots [Figure 4.2] show that both spheres are somewhat maintained throughout the Na+ simulation,
as its graph show two peaks. However, spheres merge together for K+, as its graph only shows one peak.
Additionally, the radius at which the (first) peak is reached is bigger for K+, at 3.15 Å, than for Na+, at 2.85
Å. The first non-zero value is obtained at a distance of 2.45 Å and g(r) value of 0.0021 for K+, and at 2.05
Å and 0.0007 of g(r) value. This results are consistent with other calculations performed at a higher level
of theory [28, 29].
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4.2 Interaction Energy
In order to study the interaction energy between ion and residues or water molecules, PEPs and EDA calcu-
lations were performed. From the optimized microsolvation geometry, the second sphere was completely
removed, as it could not possibly fit the Nav. The remaining first sphere, with six waters, shows a C3 sym-
metry, resulting in two differently distanced (to the ion) water molecule groups [Figure 4.1]. One water
molecule of each group was individually studied. These water molecules were named closer and farther.
The water with lowest energy, consequently the easiest to desolvate, was the farther [Tables 4.4 and 4.5], as
expected. This water was removed, and either glutamate or aspartate residues were set on its place, building
the set of systems studied [Figures 3.2 and 3.3].

The scan calculations yielded the PEP as a function of distance towards the ion. Both K+ and Na+ systems
obtained the minimum energy distance on the glutamate and aspartate at 3.4 and 3.2 Å, respectively. In
contrast, the water solvation sphere was maintained for the EDA calculations [Tables 4.4 and 4.5]. These
structures are not fully optimized, which may lead to some inaccuracy on the representation of the results.

Table 4.4: Main results obtained from EDA calculations performed on the four Na+ systems obtained
through the microsolvation sphere optimization and the scans. Systems maintain the same nomenclature
used before and shown at Figure 3.2. It is important to take in consideration that ‘Dispersion’ represents all
the non-induction polarization energy.

Energy (kcal/mol) sCW sFW sIW sGLU sIGLU sASP sIASP
Electrostatic -14.409 -12.228 -104.300 -90.351 -193.790 -90.217 -192.428

Pauli 10.264 10.587 36.681 17.013 32.361 15.538 32.269
Dispersion 0.418 -1.304 -10.074 -16.223 -39.746 -15.757 -39.561
Induction -6.354 -5.599 -22.104 -0.527 5.340 -0.207 5.188

Total -10.072 -8.536 -99.716 -90.015 -195.675 -90.569 -194.374

Table 4.5: Main results obtained from EDA calculations performed on the four K+ systems obtained through
the microsolvation sphere optimization and the scans. Systems maintain the nomenclature used before
and shown at Figure 3.3. It is important to take in consideration that ‘Dispersion’ represents all the non-
induction polarization energy.

Energy (kcal/mol) pCW pFW pIW pGLU pIGLU pASP pIASP
Electrostatic -12.699 -11.574 -83.524 -92.473 -177.613 -97.500 -183.775

Pauli 6.295 6.032 32.227 5.170 32.319 18.300 37.814
Dispersion -2.866 -2.727 -10.367 -4.490 -15.744 -12.966 -16.541
Induction -1.002 -1.028 -11.671 -1.903 -10.738 -2.441 -11.84

Total -10.263 -9.289 -73.275 -93.621 -171.636 -94.53 -174.201

The subsequent EDA calculations on the water solvation sphere, when analysing the ion-waters (IW) inter-
actions, yielded a more negative value for Na+ than for K+, with total interaction energies of -99.716 and
-73.275 kcal/mol [Tables 4.4 and 4.5], in agreement with the MD simulations. The interaction energy of
the closer water larger than the farther water, for Na+ and K+ respectively, with -10.072 and -10.263 kcal/-
mol for the closer water, and -8.536 and -9.289 kcal/mol. The interaction energy of glutamate (GLU) and
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aspartate (ASP) is very close for both ions, though closer in Na+ systems (|EsGLU − EsASP| = 0.554 kcal/-
mol), than in K+ systems (|EpGLU − EpASP| = 0.909 kcal/mol). This interaction will be referred as binding
energy. On the other hand, when comparing the interaction energies between same residues but different
ions, the K+ systems show a higher affinity between solvated ion and residue (EpGLU − EsGLU = −3.606
kcal/mol) than the Na+ systems (EpASP − EsASP = −3.961 kcal/mol). This also occurs when considering
the desolvation and residue binding simultanously. The energy necessary to desolvate a water molecule is
the exact opposite of the interaction energy between solvated ion and that specific water. Therefore, for Na+

is 10.072 kcal/mol, and for K+ is 8.536 kcal/mol. Combining these energies (desolvation and binding) does
also favour K+ over Na+, both for glutamate binding (4.1) and aspartate binding (4.2).

Na+ → ENa+-desolv-glu bind = EsGLU − EsFW = −81.479 kcal/mol
K+ → EK+-desolv-glu bind = EpGLU − EpFW = −84.332 kcal/mol

(4.1)

Na+ → ENa+-desolv-asp bind = EsASP − EsFW = −82.033 kcal/mol
K+ → EK+-desolv-asp bind = EpASP − EpFW = −85.241 kcal/mol

(4.2)

The difference in energy, for the desolvation-binding process, between ions within the same residue are of
EK+-desolv-glu bind−ENa+-desolv-glu bind = −2.843 kcal/mol, for glutamate, andEK+-desolv-asp bind−ENa+-desolv-asp bind =
−3.762, favouring K+.

Table 4.6: Results of EDA calculations perfermed on the divided systems of Na+. All energy values are
displayed in kcal/mol. The division consist on the study of monomer-ion, monomer-environment and ion-
environment. It is important to take in consideration that ‘Dispersion’ represents all the non-induction
polarization energy

sCW sFW
Energy Closer-Ion Closer-Env Ion-Env Farther-Ion Farther-Env Ion-Env

Electrostatic -23.835 6.105 -88.136 -19.716 4.24 -92.266
Pauli 8.501 1.745 30.331 6.582 3.742 32.338

Dispersion -1.441 -2.017 -8.434 -1.569 -3.106 -8.042
Induction -5.086 -0.609 -18.838 -4.474 -0.847 -19.81

Total -21.843 5.22 -85.008 -19.162 4.025 -87.709
sGLU sASP

Energy Glutamate-Ion Glutamate-Env Ion-Env Aspartate-Ion Aspartate-Env Ion-Env
Electrostatic -120.166 18.407 -92.266 -118.477 17.097 -92.266

Pauli 3.764 12.493 32.338 3.635 11.228 32.338
Dispersion -20.787 -7.378 -8.042 -20.353 -7.203 -8.042
Induction 10.075 -3.908 -19.81 9.691 -3.814 -19.81

Total -127.011 19.598 -87.709 -125.402 17.294 -87.709

These systems were divided to analyse specific interactions [Tables 4.6 and 4.7]. Such division may cause
some inaccuracies on the results. The ion-environment interaction, in FW, GLU and ASP, yielded the
exact same result, as systems are equivalent. The residue-environment interaction is of special interest,
resulting on higher repulsion (Pauli) values for Na+ in comparison with K+. This may be explained by
the shorter distance at which water molecules are found in Na+ solvation sphere. The low values for the
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Table 4.7: Results of EDA calculations perfermed on the divided systems of K+. All energy values are
displayed in kcal/mol. The division consist on the study of monomer-ion, monomer-environment and ion-
environment. It is important to take in consideration that ‘Dispersion’ represents all the non-induction
polarization energy.

pCW pFW
Energy Closer-Ion Closer-Env Ion-Env Farther-Ion Farther-Env Ion-Env

Electrostatic -16.578 2.326 -70.061 -14.357 1.451 -72.028
Pauli 5.967 0.274 27.086 5.653 0.314 27.337

Dispersion -2.163 -0.96 -8.781 -2.031 -0.995 -8.682
Induction -1.912 -0.277 -9.754 -1.885 -0.308 -9.657

Total -14.673 1.362 -61.459 -12.61 0.463 -63.317
pGLU pASP

Energy Glutamate-Ion Glutamate-Env Ion-Env Aspartate-Ion Aspartate-Env Ion-Env
Electrostatic -117.85 18.149 -72.028 -126.369 19.543 -72.028

Pauli 7.971 2.641 27.337 5.172 4.139 27.337
Dispersion -8.128 -3.177 -8.682 -0.738 -4.104 -8.682
Induction -0.929 -2.99 -9.995 -0.607 -3.234 -9.657

Total -118.84 14.611 -63.317 -122.442 16.332 -63.317

repulsion energy in K+, at the residue-environment interaction, could rise inside the protein channel, as
water molecules may be closer to other residues, either from DEKA or not.

This is further corroborated by the interaction ion-residue, deeply dominated by the electrostatic energy,
resulting in more stable values for Na+. The difference between the ion-residue interaction values be-
tween ions is of EpGLU glu−env − EsGLU glu−env = −8.171 kcal/mol, for glutamate, and EpGLU asp−env −
EsGLU asp−env = −2.960 kcal/mol, for aspartate. So a higher desolvation may contribute to reduce the
repulsion energy in Na+, favouring its coordination with DEKA over K+.

4.3 DEKA System

Table 4.8: Results of EDA calculations performed on the DEKA system following the the nomenclature
employed at Figure 3.4. It is important to take in consideration that ‘Dispersion’ represents all the non-
induction polarization energy.

Energy (kcal/mol) DEKA-I DEKA-GLU DEKA-ASP
Electrostatic -208.941 -123.964 -86.726

Pauli 30.991 66.421 40.035
Dispersion -44.73 -42.741 -30.586
Induction 9.836 -10.551 -7.854

Total -212.67 -110.745 -85.063

The energy cost of desolvation and binding between glutamate and aspartate, within Na+, is very similar
(∆E = 0.554 kcal/mol). Thus, a simultaneous coordination of both residues was considered. A frame of
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a Na+ passing through the DEKA ring, from a previous MM-MD simulation, was used as an initial posi-
tion. From geometry all waters were removed and four waters, taken from the first solvation sphere of the
optimized microsolvated structure, were added. This step was done because the waters’ positions obtained
with the FF during the MD did not seem chemically accurate. Consequently, this new structure was opti-
mized twice: constraining the DEKA position and ion or only the DEKA. The former was rejected as the
ion-residue interaction was compromised by the initial water molecules disposition. Thus, the optimization
constraining exclusively the DEKA [Figure 3.4] was employed. The system was subject to EDA calcula-
tions [Table 4.8 and 4.9]. The energy of glutamate-ion interaction (-121.631 kcal/mol) on the DEKA is
higher than that of the glutamate-ion interaction extracted from sGLU (-127.011 kcal/mol), but still lower
than the glutamate-ion from pGLU (-118.840 kcal/mol). The interaction residue-environment presents a
high repulsion value which is countered by a strong polarization energy.

Table 4.9: Results of EDA calculations performed on the divided DEKA system. The divisions consist on
residue-sodium, residue-environment and sodium-environment. It is important to take in consideration that
‘Dispersion’ represents all the non-induction polarization energy.

DEKA-GLU DEKA-ASP
Energy Glutamate-Ion Glutamate-Env Ion-Env Aspartate-Ion Aspartate-Env Ion-Env

Electrostatic -116.648 -19.658 -110.459 -77.981 -13.491 -130.532
Pauli 8.866 57.539 26.898 0.080 42.014 30.389

Dispersion -17.349 -30.135 -16.593 -6.934 -22.65 -22.611
Induction 3.400 -13.626 -9.325 3.149 -9.669 -10.019

Total -121.632 -5.876 -109.39 -81.620 -3.793 -132.665

The EDA calculations on the DEKA ring reveal that, overall, the predominant interactions are electrostatic.
There was a higher interaction with glutamate than with aspartate, though this is not necessarily significant
as the initial position of glutamate in that particular frame was favouring the interaction with the ion, with
a distance – COOglu to Na+ of 5.2 Å, in comparison with the initial distance – COOasp to Na+ of 6.6 Å.
The final distances obtained with the optimized structure were of 3.1 and 4.9 Å, for glutamate and aspartate
respectively.

The coordination with the DEKA ring may be favoured towards Na+ when considering the repulsion from
the protein structure. Due to the limit space of the channel, the shorter distances between ion and water
molecules in Na+ could be determinant to explain the DEKA selectivity. Overall, K+ presents lower energies
of desolvation-binding with either glutamate or aspartate, though this changes when exclusively considering
the interaction between ion and residue, without waters.

Further calculations to elucidate the DEKA selectivity mechanism could consist on: using more frames
with the DEKA ring; performing calculations of K+ at the DEKA ring or performing calculations on the
DEKA ring with different amounts of water. The study of the interaction with the two remaining residues
from DEKA, alanine and lysine, could be very helpful. The lysine residue has a positively charged side-
chain, that could destabilize the solvation sphere or even repel the passing ion. As K+ has a less stable
solvation sphere this effects may affect it more intensely, than Na+. Employing different methodologies
could be helpful, for instance alchemical methods in combination with previous calculations could reveal
the different behaviours of Na+ and K+ within similar situations.

In conclusion, the calculations did not yield a comprehensive understanding of the DEKA selectivity mech-
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anism. However, they did suggest several potential hypothetical mechanisms that could be investigated
further in the future. It has been demonstrated that the structure and properties of the Na+ and K+ micro-
solvation are markedly distinct, which could serve as a pivotal factor in the Nav selectivity mechanism.
Additionally, the binding to glutamate or aspartate amino acids results in disparate energies between ions,
predisposing the K+ coordination. This could undergo a shift when contemplating alternative scenarios, and
thus, this could be a subject of further investigation.
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Chapter 5

Conclusion

The Nav1.4βββ is the latest Nav that has been resolved. A cryo-EM analysis set up a final resolution of 3.2
Å for the protein, and 2.8 Åwithin its SF. The SF is conformed by four amino acids, the so called DEKA
ring, ubiquos among all eukaryotic Nav. Previous enhanced MM-MD simulations of the Nav1.4 have been
inconclusive on the matter, not showing any preference of Na+ over K+. Thus, a study of intermolecular
interactions using QM methodologies is here performed. In order to simulate the Nav1.4, key-elements
from the DEKA system, namely glutamate and aspartate, have been employed.

The microsolvated Na+ and K+ were optimized with a number of DFAs has been performed. The M06-2X
functional was finally selected as the most appropiate. Subsequent MD simulations were performed with
the microsolvated ions. These calculations elucidated the behaviour of the solvation sphere and showed that
water molecules tend to stay closer to Na+ than K+.

A model was build from the optimised microsolvated structure. These models were subject to scans which
revealed the energy over the distance towards the ion from glutamate and aspartate, which defined the
models to be employed on subsequent calculations.

The EDA calculations were carried out to further investigate the interaction energy. From these calculations,
the desolvation of a single water (the less energetically bound) was studied for both ions, revealing an
energy cost higher for Na+ than for K+. In addition, the binding energy for K+ and either glutamate or
aspartate residues is lower than those obtained for Na+. The overall desolvation and following binding
showed a preference for K+ over Na+. However, when the energy contributions are analysed separatedly, it
is noticeable that the repulsion energy is always higher for Na+. Furthermore, the analysis of the divided
systems shows that the ion-residue interaction is always more stable in Na+ than K+.

Finally, a frame from the original MM-MD of Na+ simulation was studied with EDA. A double coordination
between Na+ with glutamate and aspartate was considered. The overall results show that the interactions
are dominated by the electrostatic energy. Different coordination schemes with the DEKA, changing the
number of water molecules in close proximity to the ion, may take an important role on its selectivity.

Overall calculations are insufficient to give a clear mechanism for the selectivity of the DEKA ring. How-
ever, conservation of the solvation sphere may be very important for ion selectivity. Calculations indicate
that Na+ is more favoured than K+ to maintain the aforementioned solvation sphere while passing through
the DEKA. Many factors may contribute to this behaviour, in this work the binding to glutamate or aspartate
is particularly emphasised. However, interactions between water molecules and lysine (also on the DEKA
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ring) may be relevant. As the lysine side chain is positively charged, a wide solvation sphere could lead to
a stronger interaction between water and lysine. This interaction may destabilise the ion solvation as both
the ion and the residue are positively charged.
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Supplementary Material and Additional Information

List of Acronyms
→ B

• BS: Basis Set

• BSSE: Basis Set Superposition Error

• BO: Born-Oppenheimer

→ C

• CPU: Central Processing Unit

• cryo-EM: Cryogenic Electron Microscopy

→ D

• DEKA: Asp406/Glu761/Lys1244/Ala1536

• DFT: Density Functional Theory

• DFA: Density Functional Approximation

• DNA: Deoxyribonucleic Acid

→ E

• EDA: Energy Decomposition Analysis

→ F

• FF: Force Field

→ G

• GGA: Generalized Gradient Approximation

→ H

• HF: Hartree-Fock

• HK: Hohenberg-Kohn

→ K

• K+: Potassium Cation

A



• KS: Kohn-Sham

→ L

• LDA: Local Density Approximation

→ M

• MD: Molecular Dynamics

• MM: Molecular Mechanics

• MP2: Møller-Plesset of Second order

• MPPT: Møller-Plesset Perturbation Theory

• mGGA: meta Generalized Gradient Approximation

→ N

• Na+: Sodium Cation

• Nav: Voltage-Gated Sodium Channel

• NCI: Non-Covalent Interactions

• NMR: Nuclear Magnetic Resonance

→ P

• PEP: Potential Energy Curve

• PES: Potential Energy Surface

→ Q

• QM: Quantum Mechanics

• QC: Quadratic Convergence

→ R

• RDF: Radial Distribution Function

• RMSF: Root-Mean-Square Fluctuation

• RNA: Ribonucleic Acid

→ S

• SF: Selectivity Filter

→ T

• TFD: Thomas-Fermi-Dirac

→ U

• UEG: Uniform Electron Gas

→ W

B



• WFT: Wave Function Theory

→ X

• XC: Exchange-Correlation

Protein Sequence
Here is the Nav1.4-β1 amino acid sequence, chain A corresponds to the α subunit and chain B to the β
subunit, displayed in FASTA format:
> 6AGF\ 1 | Chain A | Sodium c h a n n e l p r o t e i n type 4 s u b u n i t a l p h a |Homo s a p i e n s ( 9 6 0 6 )\\
MASWSHPQFEKGGGARGGSGGGSWSHPQFEKGFDYKDDDDKGTMARPSLCTLVPLGPECLRPFTRESLAAIEQRAVEEEARL
QRNKQMEIEEPERKPRSDLEAGKNLPMIYGDPPPEVIGIPLEDLDPYYSNKKTFIVLNKGKAIFRFSATPALYLLSPFSVVR
RGAIKVLIHALFSMFIMITILTNCVFMTMSDPPPWSKNVEYTFTGIYTFESLIKILARGFCVDDFTFLRDPWNWLDFSVIMM
AYLTEFVDLGNISALRTFRVLRALKTITVIPGLKTIVGALIQSVKKLSDVMILTVFCLSVFALVGLQLFMGNLRQKCVRWPP
PFNDTNTTWYSNDTWYGNDTWYGNEMWYGNDSWYANDTWNSHASWATNDTFDWDAYISDEGNFYFLEGSNDALLCGNSSDAG
HCPEGYECIKTGRNPNYGYTSYDTFSWAFLALFRLMTQDYWENLFQLTLRAAGKTYMIFFVVIIFLGSFYLINLILAVVAMA
YAEQNEATLAEDKEKEEEFQQMLEKFKKHQEELEKAKAAQALEGGEADGDPAHGKDCNGSLDTSQGEKGAPRQSSSGDSGIS
DAMEELEEAHQKCPPWWYKCAHKVLIWNCCAPWLKFKNIIHLIVMDPFVDLGITICIVLNTLFMAMEHYPMTEHFDNVLTVG
NLVFTGIFTAEMVLKLIAMDPYEYFQQGWNIFDSIIVTLSLVELGLANVQGLSVLRSFRLLRVFKLAKSWPTLNMLIKIIGN
SVGALGNLTLVLAIIVFIFAVVGMQLFGKSYKECVCKIALDCNLPRWHMHDFFHSFLIVFRILCGEWIETMWDCMEVAGQAM
CLTVFLMVMVIGNLVVLNLFLALLLSSFSADSLAASDEDGEMNNLQIAIGRIKLGIGFAKAFLLGLLHGKILSPKDIMLSLG
EADGAGEAGEAGETAPEDEKKEPPEEDLKKDNHILNHMGLADGPPSSLELDHLNFINNPYLTIQVPIASEESDLEMPTEEET
DTFSEPEDSKKPPQPLYDGNSSVCSTADYKPPEEDPEEQAEENPEGEQPEECFTEACVQRWPCLYVDISQGRGKKWWTLRRA
CFKIVEHNWFETFIVFMILLSSGALAFEDIYIEQRRVIRTILEYADKVFTYIFIMEMLLKWVAYGFKVYFTNAWCWLDFLIV
DVSIISLVANWLGYSELGPIKSLRTLRALRPLRALSRFEGMRVVVNALLGAIPSIMNVLLVCLIFWLIFSIMGVNLFAGKFY
YCINTTTSERFDISEVNNKSECESLMHTGQVRWLNVKVNYDNVGLGYLSLLQVATFKGWMDIMYAAVDSREKEEQPQYEVNL
YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGGKDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPQNKIQGMVYDLVT
KQAFDITIMILICLNMVTMMVETDNQSQLKVDILYNINMIFIIIFTGECVLKMLALRQYYFTVGWNIFDFVVVILSIVGLAL
SDLIQKYFVSPTLFRVIRLARIGRVLRLIRGAKGIRTLLFALMMSLPALFNIGLLLFLVMFIYSIFGMSNFAYVKKESGIDD
MFNFETFGNSIICLFEITTSAGWDGLLNPILNSGPPDCDPNLENPGTSVKGDCGNPSIGICFFCSYIIISFLIVVNMYIAII
LENFNVATEESSEPLGEDDFEMFYETWEKFDPDATQFIAYSRLSDFVDTLQEPLRIAKPNKIKLITLDLPMVPGDKIHCLDI
LFALTKEVLGDSGEMDALKQTMEEKFMAANPSKVSYEPITTTLKRKHEEVCAIKIQRAYRRHLLQRSMKQASYMYRHSHDGS
GDDAPEKEGLLANTMSKMYGHENGNSSSPSPEEKGEAGDAGPTMGLMPISPSDTAWPPAPPPGQTVRPGVKESLV
> 6AGF\ 2 | Chain B | Sodium c h a n n e l s u b u n i t be t a −1 |Homo s a p i e n s ( 9 6 0 6 )\\
MGRLLALVVGAALVSSACGGCVEVDSETEAVYGMTFKILCISCKRRSETNAETFTEWTFRQKGTEEFVKILRYENEVLQLEE
DERFEGRVVWNGSRGTKDLQDLSIFITNVTYNHSGDYECHVYRLLFFENYEHNTSVVKKIHIEVVDKANRDMASIVSEIMMY
VLIVVLTIWLVAEMIYCYKKIAAATETAAQENASEYLAITSESKENCTGVQVAE

The protein can be obtained through the Protein Data Bank (PDB) web with the ID: 6AGF [30].
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Equipment and Software
Calculations, images and data were obtained using multiple software, here is a list of all the software used
and their respective versions:

• Gaussian - Version: Gaussian16

• Orca - Version: 5.0.4

• AMBER - Version: amber20

• MDAnalysis - Version: 2.7.0

• Obabel - Version: 3.1.1

• Pymol - Version: 2.5.0

• Molden - Version: 6.2

Calculations were done with Universidade de Vigo computational resources.
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Images

(a) (b)

(c) (d)

Figure 5.1: Results from scans on K+ systems, that are shown in Figure 3.3. The x-axis represents the
displacement from the original position, written as ‘Distance’.
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(a) (b)

(c) (d)

Figure 5.2: Results from scans on Na+ systems, that are shown in Figure 3.2. The x-axis represents the
displacement from the original position, written as ‘Distance’.
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